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Abstract
In this paper we continue our analysis of intertwining relations for both self-
adjoint and not self-adjoint operators. In particular, in this last situation, we
discuss the connection with pseudo-Hermitian quantum mechanics and the role
of Riesz bases.

PACS numbers: 45.20.Jj, 47.10.Df, 03.65.−w

1. Introduction

In a series of recent papers [1–4], we have proposed a new technique which produces, given
two operators h1 and x, a hamiltonian h2 which has (almost) the same spectrum of h1 and
whose respective eigenstates are related by the intertwining operator (IO) x. More precisely,
calling σ(hj ), j = 1, 2, the set of eigenvalues of hj, we find that σ(h2) ⊆ σ(h1). These
results extend what was discussed in the previous literature on this subject [5], and have the
advantage of proposing a constructive procedure: while in [5] the existence of h1, h2 and of an
operator x satisfying the intertwining condition h1x = xh2 is assumed, in [1–4] we explicitly
construct h2 from h1 and x in such a way that h2 satisfies a weak form of h1x = xh2. Moreover,
as mentioned above, σ(h2) ⊆ σ(h1) and the eigenvectors are related in a standard way: if
h1ϕ

(1)
n = εnϕ

(1)
n then, if x†ϕ(1)

n �= 0, h2
(
x†ϕ(1)

n

) = εn

(
x†ϕ(1)

n

)
, see [1–4]. It is well known that

this procedure is strongly related to the supersymmetric quantum mechanics, see [6] and [7]
for two rather complete overviews.

In [8–10] we have also discussed some relations between IO and the so-called pseudo-
Hermitian quantum mechanics [11, 12] and [13] for a review, in connection with the so-called
pseudo-bosons, which are excitations arising from a deformation of the canonical commutation
relation. In particular, in [8] the role of Riesz bases appeared clearly, and the operators
intertwined by x were not, in general, self-adjoint. This has suggested an extension of our
previous results to the situation in which the hamiltonian h1 is not self-adjoint but is rather, for
instance, pseudo-Hermitian. This is discussed in section 3, which follows a section dedicated
to some mathematical aspects of the self-adjoint situation. Our conclusions are contained in
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section 4. It should be mentioned that the analysis of IO for non-self-adjoint operators was
already considered, more on a physical side, in [14], and recently in [15]. In none of these
papers, however, the role of Riesz bases was considered.

2. Some mathematical aspects of the IOs

Let h1 be a self-adjoint hamiltonian on the Hilbert space H, h1 = h
†
1, whose normalized

eigenvectors, ϕ(1)
n , satisfy the following equation: h1ϕ

(1)
n = εnϕ

(1)
n , n ∈ I1 ⊆ N0 = N ∪ {0}.

Let us now consider an operator x on H such that, calling N1 := xx† and N2 := x† x, the
following commutation rule (to be considered in the sense of unbounded operators, in general)
is satisfied: [N1, h1] = 0. Both N1 and N2 are positive operators, but they could have zero in
their spectra. If this is the case, then the related Nj is not invertible. Since h1 and N1 commute,
they can be diagonalized simultaneously. Hence, it is natural to assume that the ϕ(1)

n ’s are also
eigenstates of N1. Summarizing we have

h1ϕ
(1)
n = εnϕ

(1)
n , N1ϕ

(1)
n = νnϕ

(1)
n , (2.1)

for all n ∈ I1. We call F1 = {
ϕ(1)

n , n ∈ I1
}

the set of these states. A second natural
working assumption concerns the nature of F1 which is assumed here to be complete in H and
orthonormal: 〈

ϕ(1)
n , ϕ(1)

m

〉 = δn,m,
∑
n∈I1

P (1)
n = 1, (2.2)

where 1 is the identity in H and we have introduced the following operators:

P (1)
n,mf = 〈

ϕ(1)
n , f

〉
ϕ(1)

m , and P (1)
n := P (1)

n,n, (2.3)

for all f ∈ H. It is well known that the P (1)
n ’s are orthogonal projectors: P (1)

n P (1)
m = δn,m P (1)

n

and
(
P (1)

n

)† = P (1)
n . It is also known that the orthogonality of the vectors in F1 is automatic

if the eigenvalues of h1 are all different: εn �= εm, ∀n �= m. Under our assumptions we can
write h1 and N1 as

h1 =
∑
n∈I1

εnP
(1)
n , N1 =

∑
n∈I1

νnP
(1)
n . (2.4)

Moreover, since N1 � 0, all its eigenvalues are non-negative: νn � 0, ∀n ∈ I1. Of course
N2 � 0 as well, and since they are related by the commutator [x, x†], N1 = N2 + [x, x†], we
see that, if [x, x†] > 0, then N1 > 0. If, on the contrary, [x, x†] < 0, then N2 > 0.

Hence, the invertibility of N1 or N2 can be established if [x, x†] is strictly positive or
negative defined. For instance, if x = a, where [a, a†] = 1, it is clear that N1 = a a† > 0.

Remark. This is not the only case in which we can deduce the existence of N−1
j . For instance,

if x = a with a satisfying the modified commutation relation [a, a†]q := a a† − q a† a = 1,
q ∈ [0, 1], then, since N1 = [a, a†]q + q N2, we find that N1 > 0.

Let us now define the following vectors:

ϕ(2)
n := x†ϕ(1)

n , (2.5)

for n ∈ I1. It may happen that for some n in I1 the action of x† on ϕ(1)
n returns the zero vector.

This means that ker(x†) is non-trivial. Of course, if ϕ(1)
n0

∈ ker(x†), then N1ϕ
(1)
n0

= 0 so that
νn0 = 0 and the operator N1 is not invertible. Vice versa, if N1 is not invertible, then ker(N1)

contains some non-zero vectors. Let � be such a vector. Then N1� = 0 and, consequently,
‖x†�‖2 = 0. Hence, x†� = 0, which means that � ∈ ker(x†). In other words, � ∈ ker(N1)

if and only if � ∈ ker(x†).
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Let now I2 = {
n ∈ I1 : ϕ(2)

n �= 0
}
, and let F2 = {

ϕ(2)
n , n ∈ I2

}
. Of course, if

ker(x†) = {0}, then I1 = I2, but in general we only have the inclusion I2 ⊆ I1.
The set F2 could consist, at least in principle, of very few vectors if compared with F1.

So the problem of completeness of F2 in H arises. Moreover, if x is not unitary (or at least
isometric), we do not know if different ϕ(2)

n ’s are orthogonal to each other or if they are, by
chance, eigenstates of some interesting operator. This is exactly what happens. In particular
we can prove the following

Proposition 1. Under the above hypotheses the ϕ(2)
n ’s satisfy the eigenvalue equation

N2ϕ
(2)
n = νnϕ

(2)
n , (2.6)

for all n ∈ I2. Moreover, if for n,m ∈ I2, n �= m, νn �= νm, then
〈
ϕ(2)

n , ϕ(2)
m

〉 = 0. Finally, the
set F2 is complete in H if and only if N2 is invertible.

Proof. Since n ∈ I2 the vector ϕ(1)
n does not belong to ker(x†), so that ϕ(2)

n �= 0. We have

N2ϕ
(2)
n = (x†x)

(
x†ϕ(1)

n

) = x†N1ϕ
(1)
n = νn

(
x†ϕ(1)

n

) = νnϕ
(2)
n

Then our second claim is straightforward.
Let us now assume that N−1

2 exists. Then F2 is complete. Indeed, let f be an element of H
such that

〈
f, ϕ(2)

n

〉 = 0 for all n ∈ I2. Hence, for these values of n, we also have
〈
xf, ϕ(1)

n

〉 = 0.
We consider separately two cases: I2 = I1 and I2 ⊂ I1. In the first case, since F1 is

complete by assumption, we conclude that xf = 0, which also implies that x†xf = N2f = 0.
But, since N2 is invertible by assumption, f = 0. Hence, F2 is complete.

Suppose now that I2 ⊂ I1. Then equality
〈
xf, ϕ(1)

n

〉 = 0 for all n ∈ I2, implies that
the vector xf can be written as a linear combination (which could involve infinite elements
but which is clearly convergent) of the form xf = ∑

k∈� αkϕ
(1)
k , where � = I1 \ I2 and the

αk’s are complex constants. Taking the scalar product of both sides of this expansion for ϕ
(1)
l ,

l ∈ �, since for these values of l αl = 〈
ϕ

(1)
l , xf

〉 = 〈
x†ϕ(1)

l , f
〉 = 0, we deduce that αl = 0 for

all l ∈ �. Hence, xf = 0 and, as before, since N−1
2 does exist, f = 0.

To prove the inverse implication we will show that if N−1
2 does not exist, then F2 is not

complete. Indeed, since N−1
2 does not exist there exists a vector g ∈ H, g �= 0, such that

N2 g = 0. This implies that 0 = 〈g,N2g〉 = ‖xg‖2, so that xg = 0. Suppose now that F2 is
complete. Using the equality xg = 0 we deduce that, for all n ∈ I2,

〈
g, ϕ(2)

n

〉 = 〈
xg, ϕ(1)

n

〉 = 0.
Hence, due to our assumption on F2, we would have g = 0 which is against our original
hypothesis. �

It is interesting to note that, while it may happen that x†ϕ(1)
n = 0 for some n ∈ I1, it never

happens that x ϕ(2)
n = 0 for any n ∈ I2. This fact, which is clearly due to the procedure we

are adopting, follows from the following considerations.
First we remark that, since ∀n ∈ I2, ϕ(2)

n �= 0, then

0 �= ∥∥ϕ(2)
n

∥∥2 = 〈
x†ϕ(1)

n , x†ϕ(1)
n

〉 = 〈
ϕ(1)

n , N1ϕ
(1)
n

〉 = νn.

Hence, νn > 0 ∀n ∈ I2. But, for these n’s, we also have x ϕ(2)
n = xx† ϕ(1)

n = N1 ϕ(1)
n = νn ϕ(1)

n .

Then, as stated, xϕ(2)
n �= 0 and moreover

ϕ(1)
n = 1

νn

xϕ(2)
n = 1∥∥ϕ

(2)
n

∥∥2 xϕ(2)
n . (2.7)

The normalized vectors associated with F2 are therefore F̂2 = {
ϕ̂(2)

n = 1√
νn

ϕ(2)
n , n ∈ I2

}
. By

means of proposition 1 above we deduce that each ϕ̂(2)
n is an eigenstate of N2, that they form an

orthonormal set, at least if all the νn’s are different, and that F̂2 is complete if and only if N2 is
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invertible. In analogy with what we have done before, let us define the operators P (2)
n and P̂ (2)

n

as follows: P (2)
n f = 〈

ϕ(2)
n , f

〉
ϕ(2)

n and P̂ (2)
n f = 〈

ϕ̂(2)
n , f

〉
ϕ̂(2)

n . It may be worth remarking that

while the P̂ (2)
n ’s are orthogonal projections, the P (2)

n ’s are not, since
(
P (2)

n

)2 �= P (2)
n . It is also

possible to prove the following

Corollary 2. Let us assume that for n,m ∈ I2, n �= m, νn �= νm, and that N−1
2 exists. Hence

N2 =
∑
k∈I2

P (2)
n =

∑
k∈I2

νnP̂
(2)
n , (2.8)

The proof, which makes use of the resolution of the identity for F̂2, is trivial and will not
be given here. More results on ker(x†) are discussed, under generalized assumptions, in the
next section.

As in [1–4] we now define h2 = N−1
2 (x†h1x). We know that h2ϕ

(2)
n = εnϕ

(2)
n , for all

n ∈ I2. Moreover, among other properties, we also know that h2 = h
†
2 if and only if h1 = h

†
1.

Using proposition 1, which applies since we are here assuming that N−1
2 does exist, we deduce

that F2 is complete so that h2 can be written as

h2 =
∞∑

n=0

εnP̂
(2)
n =

∞∑
n=0

εn

νn

P (2)
n . (2.9)

Adopting the Dirac bra-ket notation we find that xP (2)
n = νn

∣∣ϕ(1)
n

〉〈
ϕ(2)

n

∣∣ and P (1)
n x = ∣∣ϕ(1)

n

〉〈
ϕ(2)

n

∣∣
for all n. Then it follows that xh2 = h1x, which means that x intertwines between h2 and
h1, as in the standard papers on this subject. We will recover this intertwining relation in the
following section, generalizing our previous results [1–4].

Example. The ubiquitous harmonic oscillator. Many aspects of our procedure can be quite
well illustrated by means of the canonical commutation relation [a, a†] = 1 arising from
the hamiltonian of a quantum harmonic oscillator, which in suitable units and putting to zero
the ground state energy is h1 = a† a. If ϕ

(1)
0 is such that aϕ

(1)
0 = 0, then the eigenstates

of h1 are the usual ones: ϕ(1)
n = 1√

n!
(a†)n ϕ

(1)
0 , whose related set F1 is orthonormal and

complete in H. Let us now take x = a†. Hence, N1 = xx† = h1 and N2 = x† x = a a†.
Hence, N2 is invertible and [h1, N1] = 0. Moreover, we see that I1 = 0, 1, 2, . . . while, since
x†ϕ(1)

0 = aϕ
(1)
0 = 0, I2 = 1, 2, . . . . Hence, I2 ⊂ I1. Nevertheless, the set F̂2 coincides

exactly with F1. Hence, it is complete in H, as expected because of proposition 1. In this case
we find easily that h2 = N−1

2 (a†h1a) = aa† = h1 + 1.
If on the other hand we take x = a, then N2 = x†x = a†a = h1 which is not invertible.

This is in agreement with the fact that the set F̂2 is now a proper subset of F1 since ϕ
(1)
0 belongs

to F1 but not to F̂2. Hence, F̂2 is not complete in H, as expected because of proposition 1.
Moreover we find h2 = h1 − 1, whose eigenvalues are non-negative since its eigenvectors are
{ϕ(1)

1 , ϕ
(1)
2 , ϕ

(1)
3 , . . .}.

Example. The deformed harmonic oscillator: quons. Following [4] we consider
two operators, B and B†, which satisfy the modified commutation relation [B,B†]q :=
B,B† − qB†B = 1, q ∈ [0, 1]. Let ϕ

(1)
0 be the vacuum of B: Bϕ

(1)
0 = 0. Let furthermore

h1 = B†B. Then, putting

ϕ(1)
n = 1

β0 · · · βn−1
B†nϕ

(1)
0 = 1

βn−1
B†ϕ

(1)
n−1, n � 1, (2.10)

we have h1ϕ
(1)
n = εnϕ

(1)
n , with ε0 = 0, ε1 = 1 and εn = 1 + q + · · · + qn−1 for n � 1. Also,

the normalization is found to be β2
n = 1 + q + · · · + qn, for all n � 0. Hence, εn = β2

n−1 for

4
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all n � 1. The set of the ϕ(1)
n ’s spans the Hilbert space H and they are mutually orhonormal:〈

ϕ(1)
n , ϕ

(1)
k

〉 = δn,k .
We now take, as in the previous example, x = B†. Then N1 = B†B and N2 = BB†

and, obviously, [h1, N1] = 0. Moreover, since N2 = BB† = 1 + q B†B, and since B†B is a
positive operator, N−1

2 exists. We easily find that h2 := N−1
2 (x†h1x) = q h1 + 1 while

ϕ(2)
n = Bϕ(1)

n =
{

0 if n = 0

βn−1ϕ
(1)
n−1 if n � 1.

Then F̂2 coincides again with F1, and so it is complete in H, as expected because of
proposition 1. If we rather take x = B it is not hard to check that completeness is lost
because ϕ

(1)
0 does not belong to F̂2. This is in agreement with the fact that, since N2ϕ

(1)
0 = 0,

N2 is not invertible. Incidentally we observe that h2 = 1
q
(h1 − 1).

3. Losing self-adjointness

In the previous section we have considered the case in which the two operators h1 and h2

related by the intertwining operator x are self-adjoint. Now we will remove this assumption
and we will discuss some interesting consequences of this more general situation. In particular
we will see that, in this new context, there are strong indications which suggest to replace o.n.
bases by Riesz bases.

Let �1 be a non-necessarily self-adjoint operator onH which admits a setF1 = {
ϕ(1)

n , n �
0
}

of eigenstates:

�1ϕn = εnϕn, n � 0, (3.1)

for some (in general complex) εn. In this section we will always work under the simplifying
assumption that all these eigenvalues have multiplicity 1. This is useful to simplify the
formulation of our results, but it could be avoided most of the times. However, examples
of this situation are discussed, for instance, in [8, 9] and references therein. A class of
new examples generalizing the so-called Landau levels and in which the multiplicity of each
energetic level is infinity will be discussed in a paper which is now in preparation [16]. As
in the previous section, we will assume now that an operator x exists, acting on H, such that,
calling N1 = xx† and N2 = x† x, N1 commutes (in the sense of unbounded operators, if
needed) with �1 and that N2 is invertible. Depending on the fact that x is invertible by itself
or not, we introduce two apparently different operators:

�2 =
{
x−1�1x, if x−1 exists;
N−1

2 (x†�1x), otherwise.
(3.2)

To distinguish between these two we will sometimes call in the following �
(α)
2 = x−1�1 x and

�
(β)

2 = N−1
2 (x†�1x). It is clear that, when x−1 exists, �

(β)

2 coincides with �
(α)
2 . However,

when x−1 does not exist, �
(α)
2 makes no sense but we can still introduce �

(β)

2 . When our
statements apply both for �

(α)
2 and for �

(β)

2 , to simplify the notation we just use �2.

Remark. Analogously to what discussed in the previous section, the existence of an operator
x satisfying [xx†,�1] = 0 has interesting consequences concerning the possibility of finding
a second operator �2 with (almost) the same eigenvalues (real or complex, now it doesn’t
matter) as �1, see below.

We define, as usual,

ϕ(2)
n = x†ϕ(1)

n , n � 0, (3.3)

5
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which, if ϕ(1)
n /∈ ker(x†), is an eigenstate of �2 with eigenvalue εn, independently of whether

�1 is self-adjoint or not. Using [N1,�1] = 0 it is in fact quite easy to check that, if ϕ(2)
n �= 0,

�2ϕ
(2)
n = εnϕ

(2)
n , for all n � 0.

Remark. It should be mentioned that, if x is invertible, we could also define the eigenstates
of �

(α)
2 as ϕ̃(2)

n = x−1ϕ(1)
n , which seems more appropriate since nothing should be required

to the commutator between N1 and �1, at least as far as the eigenvalue equation for �
(α)
2 is

concerned. But, in our previous papers [1–4], we have focused our attention on the situation
in which x−1 does not necessarily exist, and this will be our main interest also here. We will
return to this aspect later on.

Let us now go back for a moment to the requirement ϕ(1)
n /∈ ker(x†) above. It is possible

to prove the following result, which extends what already stated in section 2.

Lemma 3. With the above definitions, for a given n � 0, ϕ(1)
n ∈ ker(x†) if and only if

ϕ(1)
n ∈ ker(N1) or, equivalently, if and only if ϕ(2)

n ∈ ker(x).

Proof. We only prove here that if ϕ(2)
n ∈ ker(x) then ϕ(1)

n ∈ ker(x†). Indeed our assumption
implies that 0 = xϕ(2)

n = xx†ϕ(1)
n , so that ϕ(1)

n ∈ ker(N1) which in turns implies, using the first
statement of this lemma, that ϕ(1)

n ∈ ker(x†). �

From the definition of �
(α)
2 it is clear that x is an intertwining operator, since x�

(α)
2 = �1 x.

What is not evident is whether x�
(β)

2 = �1 x is also true. We have already considered this
problem in the previous section. It is not hard to see that the answer is affirmative also in the
present situation. This is a consequence of the fact that [x†�1x,N2] = [

x†�1x,N−1
2

] = 0,
which can be proved easily. A detailed analysis produces, other than these, the following
commutation rules[

�
(j)

2 , N2
] = [

�
(j)

2 , N−1
2

] = [(
�

(j)

2

)†
, N2

] = [(
�

(j)

2

)†
, N−1

2

] = 0,

as well as[
�

†
1, N1

] = [
x†�

†
1x,N2

] = [
x†�

†
1x,N−1

2

] = [
x
(
�

(j)

2

)†
x†, N1

] = 0, j = α, β,

and the following intertwining relations, all arising from our assumptions and from (3.1) and
(3.2):

x�
(j)

2 = �1x, �
(j)

2 x† = x†�1, j = α, β. (3.4)

Of course, the second equality in (3.4) is just the adjoint of the first one only if �1 and �
(j)

2 are
self-adjoint, otherwise they are different. An interesting consequence is deduced if �2 = �

†
1,

which is important, as we will discuss in the following, in the context of pseudo-Hermitian
quantum mechanics (PHQM) [11–13]. In this case x is not only an IO but it also commutes
with �1 + �

†
1, as well as x† does. Hence, N1, N2 and �1 + �2 are three self-adjoint operators

such that [N1,�1 + �2] = [N2,�1 + �2] = 0, but, in general [N1, N2] �= 0. So they are not
expected to admit a set of common eigenvectors.

An evident difference between N1 and N2 is that, while N2 is strictly positive by assumption,
N1 needs not to be invertible. On the other hand our original assumption [N1,�1] = 0 is
reflected by [N2,�2], which is also zero. However, analogously to what we observed in
the previous section, if x is such that [x, x†] � 0 (in the sense of the operators), then
N1 = [x, x†] + N2 is also strictly positive so that it is invertible. If this is the case, the
commutation rules listed before can be enriched by other rules involving N−1

1 , which will play
no role here, and therefore will not be considered. More interesting is the following.

6
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Lemma 4. If N−1
2 exists, [�1, N1] = 0 and if (3.1) holds, then �2 = �

†
2 if and only if

�1 = �
†
1.

Proof. We give two different proofs for �
(α)
2 and �

(β)

2 .

Let us first suppose that �
(α)
2 = (

�
(α)
2

)†
. This means that we are working under the

assumption that x−1 does exist. Hence, x−1�1 x = x†�
†
1(x

−1)†, which is equivalent to

�1 = N1�
†
1N

−1
1 . This equality, since

[
N1,�

†
1

] = 0, implies that �
(α)
2 = (

�
(α)
2

)†
if and only

if �1 = �
†
1.

Let us now suppose that �
(β)

2 = (
�

(β)

2

)†
(we are no longer requiring x to be invertible).

This is equivalent to N−1
2 (x†�1x) = (

x†�
†
1x

)
N−1

2 , which, since
[
x†�1x,N−1

2

] = 0, is

equivalent to x†�1x = x†�
†
1x. Now, using (3.4), this can be rewritten as �

(α)
2 x†x =(

�
(α)
2

)†
x†x which can be multiplied from the right by N−1

2 , giving back �
(α)
2 = (

�
(α)
2

)†
.

Hence, �
(β)

2 = (
�

(β)

2

)†
if and only if �

(α)
2 = (

�
(α)
2

)†
which, in turns, is equivalent to

�1 = �
†
1. �

Proposition 5. Under the assumptions of lemma 4, let us suppose that, for a fixed k � 0, we
have ϕ

(1)
k /∈ ker(N1). Then ϕ

(1)
k is also eigenstate of N1 with a strictly positive eigenvalue νk .

Moreover ϕ
(2)
k is a non-zero eigenstate of N2 with eigenvalue νk .

Furthermore, if νk has multiplicity one, m(νk) = 1, then ϕ
(1)
k is also eigenstate of �

†
1 with

eigenvalue εk , and ϕ
(2)
k is an eigenstate of �

†
2 with eigenvalue εk .

Finally, if m(νk) = 1 for all k � 0, then F1 and F2 are orthogonal systems in H.
Moreover:

• if F1 is complete in H, then
[
�1,�

†
1

] = 0;

• if F2 is complete in H, then
[
�2,�

†
2

] = 0.

Proof. Since [�1, N1] = 0, and since m(εk) = 1, it follows that N1ϕ
(1)
k must be proportional

to ϕ
(1)
k itself. Let νk be this proportionality constant. Hence, N1ϕ

(1)
k = νkϕ

(1)
k and νk = ‖x†ϕ(1)

k ‖2

‖ϕ(1)
k ‖2

,

which is strictly positive since ϕ
(1)
k /∈ ker(x†), see lemma 3. This lemma also implies that

ϕ
(2)
k �= 0, and we have N2ϕ

(2)
k = x† xx†ϕ

(1)
k = x†N1ϕ

(1)
k = νkϕ

(2)
k .

Now, we note that ϕ
(1)
k /∈ ker

(
�

†
1

)
and that ϕ

(2)
k /∈ ker

(
�

†
2

)
. Indeed we have

〈
ϕ

(1)
k ,�

†
1ϕ

(1)
k

〉 = 〈
�1ϕ

(1)
k , ϕ

(1)
k

〉 = εk‖ϕ(1)
k ‖2,

and analogously
〈
ϕ

(2)
k ,�

†
2ϕ

(2)
k

〉 = εk

∥∥ϕ
(2)
k

∥∥2
, which are both different from zero.

If we now assume that m(νk) = 1, since
[
N1,�

†
1

] = 0, we conclude that �
†
1ϕ

(1)
k

is proportional to ϕ
(1)
k itself, and the proportionality constant is easily found to be εk:

�
†
1ϕ

(1)
k = εkϕ

(1)
k . In a similar way we also deduce that �

†
2ϕ

(2)
k = εkϕ

(2)
k .

Finally, let us assume that m(νk) = 1 for all k � 0. This implies that, taking j = 1, 2,
since different ϕ

(j)

k ’s are eigenvectors of self-adjoint operators Nj corresponding to different
eigenvalues, they must be orthogonal:〈

ϕ
(j)

k , ϕ(j)
n

〉 = 0

if k �= n, for j = 1, 2. Moreover, if for instance F1 is complete in H, hence it is an o.n. basis.
Therefore, our last claim easily follows from the fact that �1�

†
1ϕ

(1)
k = �

†
1�1ϕ

(1)
k = |εk|2ϕ(1)

k ,
for all k � 0. �
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3.1. The role of Riesz bases

Since �k , k = 1, 2, are not, in general, self-adjoint operators, the sets of their eigenstates F1

and F2 are not orthonormal, in general. This is one of the reasons why we are now considering
the role of Riesz bases in the present context. The second reason, as already stated in the
introduction, is that in a series of recent papers [8–10], Riesz bases have already appeared in
analogous problems, and they have shown to be quite relevant.

Let us now assume that the set F1 of eigenstates of �1 is a Riesz basis for H. This
means that a bounded operator T exists, with bounded inverse T −1, and an o.n. basis
E = {en ∈ H, n � 0}, such that ϕ(1)

n = T en for all n. Equivalently, from [17, 18], we can
say that the vectors of F1 are linearly independent and two constants exist, 0 < A � B < ∞,
such that, for all f ∈ H,

A‖f ‖2 �
∑
n�0

∣∣〈ϕ(1)
n , f

〉∣∣2 � B‖f ‖2.

Then a bounded operator (the frame operator) S1 := ∑
n�0

∣∣ϕ(1)
n

〉〈
ϕ(1)

n

∣∣ = T T † exists, with

bounded inverse, and the set F̃1 = {
ϕ̃(1)

n = S−1
1 ϕ(1)

n

}
is biorthogonal to F1:

〈
ϕ(1)

n , ϕ̃
(1)
k

〉 = δn,k ,
for all n, k � 0. Moreover, F̃1 is a Riesz basis by itself, since ϕ̃(1)

n = T̃ en for all n, with
T̃ = S−1

1 T . Indeed, T̃ is bounded with bounded inverse. Also, the following resolutions of
the identity can be deduced:∑

n�0

∣∣ϕ̃(1)
n

〉〈
ϕ(1)

n

∣∣ =
∑
n�0

∣∣ϕ(1)
n

〉〈
ϕ̃(1)

n

∣∣ = 1. (3.5)

Let now �1, F1 and x be as in the first part of section 3. It is interesting to analyze the nature
of F2. The first easy result is the following.

Lemma 6. Let F1 be a Riesz basis. Then the following are equivalent: (a) x = S−1
1 ; (b) the

set F2 = {
ϕ(2)

n = x†ϕ(1)
n , n � 0

}
is a Riesz basis biorthogonal to F1.

Proof. The proof that (a) implies (b) follows from our previous discussion, noting that in this
case F2 = F̃1.

The converse implication can be proved as follows: first we note that

δn,k = 〈
ϕ(1)

n , ϕ
(2)
k

〉 = 〈
T en, x

†T ek

〉 = 〈
T †xT en, ek

〉
,

for all n, k, which implies that T †xT = 1. Then, recalling that T is invertible, we get
x = (T T †)−1 = S−1

1 . �

By means of the resolutions (3.5) we can easily deduce that, if F2 = F̃1,

�1 =
∑
n�0

εn

∣∣ϕ(1)
n

〉〈
ϕ(2)

n

∣∣, and �2 =
∑
n�0

εn

∣∣ϕ(2)
n

〉〈
ϕ(1)

n

∣∣, (3.6)

from which it is possible to deduce that �1 = �
†
2 if and only if εn is real for all n.

Of course, having two biorthogonal Riesz bases (F1,F2) of eigenstates of (�1,�2)

looks quite interesting and is a natural extension of what happens for self-adjoint operators.
However, the following proposition can be seen as a sort of no-go result. Indeed it states that,
under the hypotheses we are considering here, �2 coincides with �1 and F2 coincides with
F1. In other words, we are just only apparently introducing new vectors and a new operator.

Proposition 7. Let F1 be a set of eigenstates of �1 which is also a Riesz basis, and let us
suppose that x = S−1

1 and that [�1, N1] = 0. Hence, [�1, x] = 0 and �2 = �1. Moreover,
for all n � 0, ϕ(2)

n is proportional to ϕ(1)
n .

8
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Proof. First we remark that, since x = S−1
1 , and since S1 is self-adjoint, then N1 = N2 = S−2

1 ,
which is clearly invertible. Moreover �

(α)
2 and �

(β)

2 coincide, since x−1 exists and is equal to
S1. Now, since N1 is a positive and bounded operator commuting with �1, it is known [19]
that there exists a unique positive operator, the square root of N1, which commutes with all the
operators which commute with N1. Of course this positive square root is S−1

1 itself, and then
it follows that

[
�1, S

−1
1

] = 0. Our claims now easily follow. �

This result suggests that the assumptions contained in lemma 6 are too restrictive and
should be weakened. This is exactly what we will do in the rest of this section. We begin
with the following proposition, related to the structure of �1 in connection with its pseudo-
Hermiticity. This result generalizes those contained in [12].

Proposition 8. If �1 admits a basis of eigenvectors which is a Riesz basis, with real
eigenvalues, then there exists an operator T, bounded with bounded inverse, such that �1

is (T T †)−1-pseudo-Hermitian. Vice versa, if �1 is (T T †)−1-pseudo-Hermitian for some
operator T, bounded with bounded inverse, and if the operator T −1�1T admits an o.n. basis
of H as eigenstates, then �1 admits a basis of eigenvectors which is a Riesz basis, with real
eigenvalues.

Proof. Let us first assume that �1 admits a basis of eigenvectors F1 which is a Riesz
basis, and that its eigenvalues are real: �1ϕ

(1)
n = εnϕ

(1)
n , for all n. Hence, as already stated,

ϕ(1)
n = T en for a certain T ∈ B(H), invertible with T −1 ∈ B(H), and an o.n. basis E = {en}.

Hence, the eigenvalue equation for �1 can be rewritten as

�1,T en = εnen, n � 0, (3.7)

where �1,T := T −1�1T . Of course this means that �1,T = ∑
n�0 εn|en 〉〈 en| which, since εn

is real for all n, implies that �1,T is self-adjoint. Now, simple algebraic manipulations show
that �1,T = �

†
1,T if and only if �

†
1 = (T T †)−1�1(T T †), so that �1 is (T T †)−1-pseudo-

Hermitian [11–13].
Vice versa, let us assume that an operator T exists, bounded with inverse bounded, such

that �1 is (T T †)−1-pseudo-Hermitian. Then �
†
1 = (T T †)−1�1(T T †) which implies that,

defining as before �1,T := T −1�1T , �1,T = �
†
1,T . Hence, since an o.n. basis E = {en} of

eigenvectors of �1,T exists by assumption, �1,T en = εnen, for all n, it follows that εn ∈ R. It
is further clear that, defining ϕ(1)

n = T en and F1 = {ϕ(1)
n , n � 0}, this set is a Riesz basis of

eigenvectors of �1, with real eigenvalues. �

A simple consequence of this proposition is the following

Corollary 9. Let us assume that, for a certain T ∈ B(H) with bounded inverse,
�1 is (T T †)−1-pseudo-Hermitian. Let us further assume that the IO x is bounded and
invertible and that [�1, N1] = 0. Then �2 = x−1�1x admits a Riesz basis of eigenvectors
F2 = {

ϕ(2)
n = x†ϕ(1)

n , n � 0
}

with real eigenvalues.

The proof is straightforward and will not be given here. However, it should be mentioned
that (F1,F2) are not biorthogonal in general, and this makes the procedure non-trivial. Indeed
we have already seen that, if (F1,F2) are biorthogonal, then x = S−1

1 necessarily and, as a
consequence, �2 = �1.

Remark. It may be worth noting that, as widely discussed in [8], different families
of coherent states, or of generalized coherent states, can be associated with any Riesz
basis. In particular, we can construct two dual families of coherent states which, together,

9
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produce a decomposition of the identity. This aspect of the theory will not be considered
here.

We conclude this section reconsidering what we have done in [8] in the following.
Our starting point is a Riesz basis of H, F := {ϕn, n � 0}. Then, if S = ∑

n |ϕn 〉〈 ϕn|
is its frame operator, we define F̂ = {ϕ̂n := S−1/2ϕn, n � 0}. This is an o.n. basis:∑

n |ϕ̂n 〉〈 ϕ̂n| = 1 and
〈
ϕ̂n, ϕ̂k

〉 = δn,k . Let now A be a lowering operator defined by
Aϕ̂n = √

nϕ̂n−1, for all n � 0. In particular this means that Aϕ0 = 0. Its adjoint is a
raising operator: A†ϕ̂n = √

n + 1ϕ̂n+1, n � 0, and they satisfy the canonical commutation
relation [A,A†] = 1. Let us now define

a = S1/2AS−1/2 and b = S1/2A†S−1/2.

Then [a, b] = 1 and, in general, a �= b†. This is the commutation rule which defines the
so-called pseudo-bosons [20]. Moreover aϕn = √

nϕn−1 is a lowering operator forF while the
related raising operator is b: bϕn = √

n + 1ϕn+1 [8]. Now we put F1 ≡ F , i.e. ϕ(1)
n = ϕn for

all n, and F2 = {
ϕ(2)

n = S−1ϕ(1)
n

}
, and we see that ϕ(1)

n = 1√
n!

bnϕ0 and ϕ(2)
n = 1√

n!
(a†)nϕ

(2)
0 ,

where ϕ
(2)
0 = S−1ϕ

(1)
0 = S−1ϕ0. (F1,F2) are biorthogonal and, defining �1 = ba and

�2 = �
†
1 = a†b†, we find that �1ϕ

(1)
n = nϕ(1)

n and �2ϕ
(2)
n = nϕ(2)

n , for all n � 0.
Moreover, S acts as an IO since �1S = S�2. But, since S is invertible, this also implies

that �2 = S−1�1S so that, recalling that �2 = �
†
1, �1 is S−1-pseudo-Hermitian.

The non-triviality of this example, i.e. the fact that �2 �= �1, is based on the fact that the
main assumption of proposition 7 is violated: [�1, N1] = [�1, S

−2] �= 0, in general. This can
be understood since we can show, first of all, that [�1, S

−2] = 0 if and only if [A†A, S2] = 0.
But 〈ϕ̂l , [A†A, S2]ϕ̂n〉 = (l − n)〈ϕ̂l , S

2ϕ̂n〉 which is zero, for all l and n, if S2 is diagonal in F̂
but not in general. Therefore, without further assumptions, [�1, N1] �= 0.

Analogously, it is also possible to check directly that, but if S is diagonal in F̂ ,
〈ϕ̂l , [A†A, S]ϕ̂n〉 �= 0 and, as a consequence, [�1, S

−1] �= 0 and, yet, �2 �= �1.

4. Conclusions

We have considered some mathematical aspects of intertwining operators extending our
previous results also to the situation of non-self-adjoint operators. This has produced
interesting results in connection with pseudo-Hermitian quantum mechanics (PHQM). The
role of Riesz bases, in the present context, has been analyzed in some detail and they appear
to be relevant alternatives to o.n. bases whenever we look for eigenstates of a non-self-adjoint
operator.

We end the paper with a short summary of our point of view:
In order to relate the eigensystems of �1 and �2 it is sufficient to have some intertwining

relation �2x = x�1 and it is not necessary that x−1 exists. Indeed, if � is an eigenstate
of �1 with eigenvalue ε, then x� is either zero or is an eigenstate of �2 with the same
eigenvalue.

However, if we want to talk of standard pseudo-Hermiticity, �2 must coincide with
�

†
1 and x must be invertible. But, since if x is not invertible our approach still works and

produces (quasi)-isospectral operators, we believe it may be worth investigating whether some
other aspects of PHQM, other than the coincidence of the eigenvalues, can be extended
in our more general settings. This work, which we have just began here, is now in
progress.
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[19] Reed M and Simon B 1980 Methods of Modern Mathematical Physics vol I (New York: Academic)
[20] Trifonov D A 2009 Pseudo boson coherent and Fock states arXiv:quant-ph/0902.3744

11

http://dx.doi.org/10.1016/j.physleta.2008.08.047
http://dx.doi.org/10.1088/1751-8113/42/7/075302
http://dx.doi.org/10.1063/1.3094758
http://dx.doi.org/10.1016/j.physleta.2009.05.037
http://dx.doi.org/10.1063/1.1383787
http://dx.doi.org/10.1063/1.1463217
http://dx.doi.org/10.1016/j.aop.2004.11.002
http://dx.doi.org/10.1063/1.3300804
http://dx.doi.org/10.1016/S0550-3213(02)00347-4
http://dx.doi.org/10.1088/0305-4470/37/48/009
http://dx.doi.org/10.1063/1.1461427
http://www.arxiv.org/abs/quant-ph/0810.5643
http://dx.doi.org/10.1142/S0217751X99001342
http://dx.doi.org/10.1016/j.physletb.2009.02.038
http://www.arxiv.org/abs/quant-ph/0902.3744

	1. Introduction
	2. Some mathematical aspects of the IOs
	3. Losing self-adjointness
	3.1. The role of Riesz bases

	4. Conclusions
	Acknowledgments
	References

